14 H L gm—
WW W@ AC
| IN T ER u“!

o i
CPC « PCW JOYCE

2 e
121 (W= 4 Y

Dezember 1991/
Januar 1992

i 7’ . Jahrgang

Ibstgestrick
D Pascal &

Grofe RSX-Bibliothek

= & Alles, was Ihrem BASIC immer schon gefehlt hat
- — 35neue Befehle

- - PuIIdown-Menus RAM-Dlsk Interruptverwaltung und, und und ..

- Grafiksyste
— Neue LocoScri

Der
Neue

PCW 512 plus

“Alkatrax“-

Codierprogramm

Binadrdateien leicht verschliisselt

Das Thema Datenschutz ist schon seit den Kindertagen der Computer in
aller Munde. Eine wichtige MaBnahme ist das Unlesbarmachen von Daten.
Bisher konnte man nur auf dem CPC Datenfiles oder BASIC-Programme
verschliisseln. Wir stellen eine Moglichkeit vor, nun auch Maschinenpro-
gramme vor fremdem Zugriff zu schiitzen.

Bisher gab es schon eine ganze Menge
Codierprogramme, die jedoch alle be-
stimmte Nachteile hatten.

Entweder das Programm codiert mit ei-
nem Codewort, welches man leicht
vergessen kann (auBerdem muB man
jedesmal wieder mit diesem Wort de-
codieren lassen), oder in einem Basic-
Programm werden Zeilen durch Uber-
lange, falsche Zeilennummern und so
weiter geschiitzt.

Eine weitere Moglichkeit eines Kopier-
schutzes ist, daf das Directory unsicht-
bar gemacht wird. Einfache Abhilfe:
Diskmonitor, Directory Editor ... rein-
laden, Directory dndern, fertig. Alles
wieder da. Aber warum eigene, wir-
kungslose und unbrauchbare Schutzar-
ten ausdenken, wenn man nur bei den
Profis schauen muf}. Und genau das ist
der mit Sicherheit wirkungsvollste
Schutz, wie Sie gleich nach einer Er-
kldrung erkennen kénnen. Vorab noch
eine kurze Information: Selbst der Ent-

80 epc 12'91/1'92

wickler dieses Schutzes briuchte fiir
ein normal geschiitztes Programm vier
bis zwolf Stunden (je nach Linge des
Schutzes)!!! Nun folgen einige Infor-
mationen iber diesen Kopierschutz
und seine Arbeitsweise:

Jedem Computerbesitzer ist das Wort
Kopierschutz ein bekannter Begriff (so-
fern er Originalsoftware benutzt und ver-
sucht hat, sie zu kopieren). Aber wie
funktioniert ein Kopierschutz?

Die Grundlage ist eine mit einem Spe-
zialformat formatierte Diskette. Dieses
Format ist meist nur schwer zu kopie-
ren. Das gesamte Programm ist dabei
nicht als File abgespeichert, sondern
direkt auf Diskette geschrieben. Um es
einzulesen, wird eine Trackladeroutine
aufgerufen, die das Programm von den
Tracks in den Speicher liest. Wenn
man diese Laderoutine, die oft sehr
kompliziert ist, ungeschiitzt vorliegen
hat, ist es meistens ein Leichtes (fiir
Assembler-Kundige!), das Programm

einlesen zu lassen und als File normal
abzuspeichern. Auf diesem Prinzip be-
ruht tibrigens das Cracken von .Origi-
nalsoftware:

Man versucht also an den Lader heran-
zukommen. Doch dies ist wirklich sehr
schwer. Da die Programmierer natiir-
lich nicht wollen, da man leicht an
diese Laderoutine kommt, verschliis-
seln sie diese mit zirka 60 bis 300 Co-
dierschleifen. Jetzt werden Sie fragen.
was sind Codierschleifen und wie funk-
tionieren sie ? So arbeiten diese Co-
dierschleifen in Assembler :

Codierschieifen

Ein Register, meist HL, zeigt auf das
erste Byte hinter dieser gerade “akti-
ven“ Schleife. In BC oder DE steht die
Anzahl der Bytes, die decodiert ode!
codiert werden sollen. Dann wird da:
Byte in HL eingelesen, verkniipft und
wieder zuriickgeschrieben. HL wird
erhoht, DE beziehungsweise BC er-
niedrigt. Diese Prozedur wird so lange
wiederholt, bis der Zéhler (DE oder
BC) gleich 0 ist.

Dann ist die ndchste Schleife decodiert.
und die darauffolgenden sind “etwas™
decodiert. Bei dieser und den néchsten
Schleifen geht’s genauso weiter, wie
eben gezeigt. Als Beispiel dient hier die
Beispielroutine.

Nachdem die erste Schleife n mal (n =
laenge) durchlaufen ist, steht die dar-
auffolgende decodiert, also im Format
wie die erste im Speicher und wird au-
tomatisch ausgefiihrt, weil ja nach dem
letzten Befehl der ersten Schleife die
zweite gleich beginnt. Und so geht d
dann immer weiter, bis alle Schleifgi
beendet sind und das Programm richtig
im Speicher steht.

Damit aber Programmcode decodiert
werden kann, muf er vorher codiert
werden. Man ldft den Vorgang also
riickwarts ablaufen:

Combat School

Gryzor

Trantor - The Last Stormtrooper
Human Killing Machine
Thunder Blade

Sonic Boom

Die Arche des Captain Blood
Street Fighter

Last Ninja 2

Summer Games 1+2
Crackdown

Heath Wave (Compilation)
Arcade Muscles (Compilation)
10 MEGA Games (Compilation)

Diese Programme benutzen zum Beispiel den
vorgestellten Kopierschutz.

begin LD HL,start ;Beginn der De - Codierung BASIC : HL = start
LD BC,laenge ;laenge = ende - start + 1 BASIC : BC = laenge
loop LD A,(HL) ;Wert aus HL holen BASIC : A = PEEK (HL)
XOR wert ;verkniipfen (wert:0-255)
LD (HL),A ;verkniipften Wert in HL schr. BASIC : POKE HL, A
INC HL ;HL um eins erhéhen BASIC:HL = HL + 1
DEC BC ;BC um eins erniedrigen BASIC:BC = BC-1
LDAB ;Test,obBC = 0 BASIC:A =B
ORC ;Dazu wird B mit C geORt BASIC:A = AORC
JR NZ,loop ;Nicht 0 ? Dann nochmal BASIC : IF A< >0 THEN loop

Beispiel fiir die (De)Codierung eines Bindirfiles. Anschliefend folgt das Programm.

Zuerst beginnt man mit der letzten
Schleife bei der Codierung, dann bei
der vorletzten und so weiter bis hin zur
ersten. Nun steht alles geXORt im
Speicher. Das Schwierige am Cracken,
dem Hacken der Schleifen, ist aber,
dafl es so unwahrscheinlich viele Sor-
ten davon gibt. Es werden insgesamt
zirka fiinfzig Typen verwendet. Aber
i vir wollen ja nicht cracken, weil wir
keine Raubkopierer sind. Wozu aber
dann die ganzen Erkldrungen ?
@® weil man so die Funktionsweise ei-
nes Kopierschutzes durchschauen
kann,
® weil man so einsehen kann, daB dies
der sicherste Kopierschutz iiberhaupt
sein muB und
® weil dadurch die Funktionsweise
meines Codierprogrammes anschau-
lich wird!
Funktionsweise des Programmes:
Nach dem Start werden Sie nach dem
Namen des zu codierenden Program-
mes (nur Bindrprogramme) und dessen

Startadresse gefragt. Die Originalstart-
adresse muB hierbei unbedingt beibe-
halten werden! Dann kommt eine Ab-
frage nach der Anzahl der Schleifen.
Geben Sie hier einen Wert zwischen 1
und X ein. X sollte nicht zu groB sein,
da sonst der Speicherplatz nicht rei-
chen wiirde. Aber vierzig Schleifen
wiren sicher schon genug.

Und dann geht’s auch schon los! Das
Programm wird codiert. Je nach Linge
und Anzahl der Schleifen dauert dies
einige Zeit; bei einer Linge von 4096
Bytes und einer Schleifenanzahl von
vierzig zum Beispiel 45 Sekunden. Da-
nach werden Sie aufgefordert, eine Ta-
ste zu driicken. Das fertige Produkt
wird als CODE.BIN abgespeichert.
Falls keine Abspeicherung gewiinscht
ist, driicken Sie einfach zweimal die
Escape-Taste. Das folgende kurze Pro-
gramm veranschaulicht eine Codie-
rung:

FOR X=84000 TO &5000: POKE X, &C9: NEXT
Danach das Codierprogramm starten,

bei NAME bitte RETURN driicken,
damit kein Programm geladen wird.
Als Startadresse &4000, als Endadres-
se &5000. Danach merken Sie sich bit-
te die neue, vom Programm angegebe-
ne Startadresse. Danach sehen Sie sich
den Speicher von &4000 bis &5000
wie folgt an:

FOR X=%4000 TO &5000:? HEX$(PEEK(X))"
45 :NEXT

Jetzt miiBten lauter verschiedene Werte
ausgegeben werden. Das sind die co-
dierten Bytes. Dann rufen Sie die neue
Startadresse auf, die Sie sich gemerkt
haben, mit: CALL neue Startadresse
Jetzt schauen wir nochmal den Spei-
cher an:

FOR X=§4000 TO &5000:? HEX$(PEEK(X))"
U; :NEXT

Der alte Wert &C9 steht jetzt wieder
da. Wenn Sie ein Programm schiitzen,
dann bitte nur ein Programm, welches
selbstindig lauffahig ist, also mit CALL
adresse aufgerufen werden kann, und
keine Grafik oder etwas in dieser Rich-
tung. Viel SpaB beim Verschliisseln.

Anmerkung: Die Erkldrungen verlan-
gen eine gewisse Vorkenntnis in der
Programmiersprache Assembler. Aber
auch Assembler-Unkundige koénnen das
Prinzip verstehen, nicht aber die Erkli-
rung der Codierschleifen, was fiir die
Benutzung des Programmes nicht erfor-
derlich ist!

Klaus Meffert/rs

10 /CODIER.LDR 777] 10 Thkhkkhkkhhhkkkkhhhkkhkkhkkkkkkkkdkkhd ko 1383]
1. 20 ’Generiert PROGRAMM.BIN fuer das 2821] 20 ’‘*Special Alkatraz Protection System* 2073]
30 ’Alkatraz Protection System 2837] 30 ’*Version 2.0 (c) 1991 Klaus Meffertx 1926]
40 ’(C) 1991 Klaus Meffert 435] 40 ’* & CPC International * 966]
50 ¥ & CPC Internationl 1846] 50 Phkkdkkkkhhkkkkhkhkhkhhdkhkkkkwkkkhhdkkkk 1383]
60 117 60 ’‘Dieses Programm erstellt einen Kopier- [3011]
70 FOR i=&AF00 TO &AFBF 1282] 70 ’schutz, wie er bei komerzieller Soft- 3307]
80 READ a$:w=VAL("&H"+a$) 880] 80 ’‘ware verwendet wird. 1653]
90 s=s+w:POKE i,w:NEXT 1039] 90 . 1171
100 IF s<> 21056 THEN PRINT"Fehler":END 2578] 100 ‘Vorbereitung 643]
110 SAVE"codier.bin",b,&AF00,&C0:END 2169] 110 LOAD"codier.bin", &AF00 1692]
120 DATA 3E,08,32,2C,AF,21,F0,3F 903] 120 zyk=6:var=0:stufe=0 1965]
130 DATA 01,10,02,C5,7E,57,3A,2C 856] 130 ’‘Kopfzeile ausgeben 1933]
140 DATA AF,5F,06,09,3C,FE,80,C2 1399] 140 MODE 2 513]
150 DATA 1C,AF,D6,80,10,F6,32,2C 1607] 150 PRINT STRINGS(80,"*"); 1398]
160 DATA AF,7B,AA,77,23,Cl1,0B,78 961] 160 PRINT" ALKATRAZ PROTECTION SYSTEM 5873]
170 DATA B1,20,E0,C9,18,01,00,00 975] (c) 1991 Klaus Meffert & CPC International
180 DATA 16,00,21,00,00,01,00,00 1422 .
190 DATA 5E,7B,AA,77,53,0B,23,78 1593 170 PRINT STRINGS(80,"*") 1446]
200 DATA B1,C2,38,AF,C9,3E,09,32 1319 180 ’Eingaben 1013]
210 DATA FO,AF,21,30,40,01,10,00 1439 190 INPUT"Programmname : ", name$ 2404]
220 DATA 3A,F0,AF,C5,57,06,0D,3C 1530 200 IF name$="" THEN 230 393])
230 DATA FE,80,C2,5F,AF,D6,80,10 1722 210 INPUT"Startadresse : ", adr 2868]
240 DATA F6,32,F0,AF,7E,AR,57,3A 1499 220 MEMORY adr-1:LOAD ""+name$,adr 349]
250 DATA F1,AF,AA,57,3A,F2,AF,AA 1124 230 INPUT"Wieviele Schleifen : " ,loops 3421]
260 DATA 77,00,00,23,C1,0B,78,B1 1965 240 ’'Variablen entsprechend den Eingaben d [3262]
270 DATA C2,50,AF,C9,3E,0R,32,2D 350] imensionieren ,
280 DATA AF,21,45,87,01,02,02,FD 1586 250 DIM a$(40),art(loops),lo(loops-1),hi(l [4750]
290 DATA 21,FF,3F,C5,3A,2D,AF,FD 1724 oops-1),102(loops-1),hi2(loops-1)
300 DATA AE,00,AC,AD,FD,77,00,0B 1150 260 DIM zy(loops-1),wert(loops-1),typ(loop [5846]
310 DATA 2B,FD,23,3A,2D,AF,06,0F 1815 s-1),103(loops-1),hi3(loops-1)
320 DATA 3C,FE,80,C2,A8,AF,D6,80 1378 270 PRINT"Welcher Bereich soll codiert wer [2969]
330 DATA 10,F6,32,2D,AF,C1,0B,78 751] den ?
340 DATA B1,C2,8B,AF,C9,FF,FF,FF 1569] 280 INPUT"Von : ",anfang [2117]
350 DATA 00,00,00,00,FF,FF,FF,FF 1667] 290 INPUT"Bis : ",ende [768]

12'91/1'92 eP€ 81

300 FOR x=1 TO loops

310 art(x)=INT(RND*5)+1

320 NEXT

330 ’Benoetigten Speicher berechnen

340 aut=1:space=anfang-1

350 laenge=ende-space+l

360 IF laenge<0 THEN laenge=laenge+65536

370 LOCATE 1,6:FOR x=1 TO 6:PRINT SPACES (8

0) ; :NEXT

380 PRINT:FOR x=1 TO loops

390 IF art(x)=1 THEN space=space-18

400 IF art(x)=2 THEN space=space-16

410 IF art(x)=3 THEN space=space-25

420 IF art(x)=4 THEN space=space-28

430 NEXT

440 space=space-6:begin=space

450 IF space<&lC50+loops*50 THEN LOCATE 1,

25:PRINT" Achtung - Zu wenig Spe

icher - Bitte eine Taste druecken ! ":CALL
&BBO6:RUN 120

460 laenge=ende-space+l

470 IF laenge<0 THEN laenge=laenge+65536

480 ’Dateiinformationen ausgeben

490 LOCATE 55,5:PRINT"Start :"HEXS(space,

4) :LOCATE 55, 6 PRINT"Laenge '"HEXS(laenge+

57,4) :LOCATE 55,7 :PRINT"Ende :"HEXS (ende

+57,4)

500 gesamt=laengetspace

510 GOSUB 1350:RESTORE 1450:FOR x=1 TO 7:R

EAD a$:POKE space,VAL("&"+a$)

520 space=space+l:NEXT

530 GOSUB 1350:LOCATE 1,12:PRINT"Loop Nr.:
":FOR zaw=1 TO loops:LOCATE 10,12:PRINT za

w

540 ON art(zaw) GOSUB 760,890,1020,1170
550 NEXT

560 GOSUB 1350:RESTORE 1470:spa=ende+1l

570 READ a$:FOR x=1 TO LEN(a$)

580 POKE spa,ASC(MIDS$(a$,x,1)):spa=spa+l:N
EXT

590 ‘Programm codieren

600 GOSUB 1350:PRINT:PRINT:PRINT"Codiere
<= .. Bitte warten il

610 FOR x=var-1 TO 0 STEP -1:ON typ(x) GOS

UB 680,700,720,740

620 NEXT

630 LOCATE 1,24:PRINT"Neue Startadresse
"HEXS (begin)

640 PRINT" Bitte die Sicherungsdis
kette einlegen und eine Taste druecken":CA
LL &BBO06

650 SAVE"code",b,begin,laenge+57,start

660 END

670 ’‘Codieren mit Typ 1

680 POKE &AF33,l0(x):POKE &AF34,hi(x):POKE
&AF36,102(X) :POKE &AF37,hi2(x):POKE &AF31
,wert (x):CALL &AF30:RETURN

690 ’‘Codieren mit Typ 2

700 POKE &AF06,l0(x):POKE &AF07,hi(x):POKE
&AF09,102(x) :POKE &AFOA,hi2(x):POKE &AF01
,2y(x) :CALL &AF00:RETURN

710 ’‘Codieren mit Typ 3

720 POKE &AF4B,lo(x):POKE &AF4C,hi(x):POKE
&AFAE,102(x) : POKE &AF4F,hi2(x):POKE &AF46
,2y(x) :POKE &AFF1,l03(x):POKE &AFF2,hi3(x)
:CALL &AF45:RETURN

730 ’‘Codieren mit Typ 4

740 POKE &AF7D,zy(X):POKE &AF89,1l0(x):POKE
&AF8A,hi(x): POKE &AF85,102(x) : POKE &AF86,

hi2(x):POKE &AF82 1o3(x) POKE &AF83, h13(x)
:CALL &AF7C: RETURN

750 END

760, “Typ 1

770 lo=0:hi=0:wert=INT(RND*65)+1:wert(var)
=wert :merk=space:RESTORE 1370

780 FOR x=1 TO 18:READ a$(x):POKE space,VA
L("&"+a$(x)):space=space+l:NEXT

790 POKE merk+7,wert

800 space=space-1:hi=INT(space/256):lo=spa
ce-hi*256:IF hi<0 THEN hi=256+hi

810 POKE merk+1,l10:POKE merk+2,hi

820 lo(var)=lo: hl(var) =hi

830 zahl=ende-space+l: hi=INT(zahl/256):1lo=
zahl-hi*256:IF hi<0 THEN hi=256+hi

840 POKE merk+4,1lo:POKE merk+5,hi

850 102(var):lo:hiz(var)=hi:zyk=zyk+(ende-
space+1)*9:zyk=zyk+3:space=space+1

860 GOSUB 1340

870 typ(var)=l:var=var+l

[1525]
1243]
350]

3036]
2353]
1235]
2585]
2640]

2121]
2735]
1335]
1905]
1208]
350]

1160]
9519]

1235]
2585]
1309]
8818]

[1472]
[5241]

[872]
[5682]

[1566]
[350]
[2885]
[717]
[2091]

[1190]
[5872]

[3063]

[350]
[4251]

[7265]

[2678]
[110]
[657]
[5878]

[664]
[8181]

[663]
[9090]

[670]
[8276]

[110]
[82]
[4791]

[4857]

[972]
[4530]

[1448]
[1808]
[5869]

[933]
[6189]

[974]
[491]

880 RETURN

890 'Typ 2

900 zyk=2zyk+2:GOSUB 1340:zy(var)=zyk

910 rreg=1:10=0:hi=0:merk=space:RESTORE 13
90:FOR x=1 TO 16:READ a$(x)

920 POKE space,VAL("&"+a$(x)):space=spac
e+1:NEXT

930 space=space-1:hi=INT(space/256):lo=spa
ce-hi*256:IF hi<0 THEN hi=256+hi

940 POKE merk+1,10:POKE merk+2,hi

950 lo(var)=lo: hl(var) =hi

960 zahl=ende-space+1:hi=INT(zahl/256):1lo=
zahl-hi*256:IF hi<0 THEN hi=256+hi

970 POKE merk+4,10:POKE merk+5,hi

980 loz(var):lo:hiz(Var):hi:zyk:zyk+(ende-
space+1)*9:space=space+l

990 GOSUB 1340

1000 typ(var)=2:var=var+l

1010 RETURN

1020 ‘Typ 3

1030 zyk=2zyk+5:GOSUB 1340:zy(var)=zyk:merk
=space:RESTORE 1410:FOR x=1 TO 25

1040 READ a$(x):POKE space,VAL("&"+a$(x)):
space=space+l :NEXT

1050 hi=INT((space-16)/256):lo=(space-16)-
hi*256:IF hi<0 THEN hi=256+hi

1060 POKE merk+7,lo:POKE merk+8,hi

1070 lo3(var)=lo:hi3(var)=hi

1080 space=space-1:hi=INT(space/256):1lo=sp
ace-hi*256:IF hi<0 THEN hi=256+hi

1090 POKE merk+1,l10:POKE merk+2,hi

1100 lo(var)=lo:hi(var)=hi

1110 zahl=ende-space+1:hi=INT(zahl/256):10
=zahl-hi*256:IF hi<0 THEN hi=256+hi

1120 POKE merk+4,l10:POKE merk+5,hi

1130 lo2(var)=lo:hi2(var)=hi:zyk=zyk+(ende
—-space+1)*13:space=space+l

1140 GOSUB 1340

1150 typ(var)=3:var=var+l

1160 RETURN

1170 'Typ 4

1180 zyk=zyk+4:GOSUB 1340:zy(var)=zyk

1190 lo=0:hi=0:merk=space:RESTORE 1440:FOR
x=1 TO 28:READ a$

1200 POKE space,VAL("&"+a$):space=space+
1 :NEXT

1210 space=space-1:hi=INT(space/256):1lo=sp

ace-hi*256:IF hi<0 THEN hi=256+hi

1220 POKE merk+5,10:POKE merk+6,hi

1230 lo(var)=lo:hi(var)=hi

1240 zahl=ende-space+1:hi=INT(zahl/256):10
=zahl-hi*256:IF hi<0 THEN hi=256+hi

1250 POKE merk+1,lo:POKE merk+2,hi

1260 lo2(var)=lo:hi2(var)=hi

1270 RANDOMIZE timer:lo3(var)=INT(RND*256)
:POKE merk+8,lo3(var)
%280)hi3(var):INT(RND*ZSG):POKE merk+9,hi3
var

1290 zyk=zyk+(ende-space+l)*15:space=space
+1

1300 GOSUB 1340

1310 typ(var)=4:var=var+l

1320 RETURN

1330 -

1340 za=zyk:za=INT(za/128):zyk=zyk-za*128:

RETURN

1350 stufe=stufe+1:LOCATE 55,9:PRINT"Stufe

: "stufe:RETURN

1360 ’DATA-FIELD

1370 '1.T9p

1380 DATA 21,00,00,01,00,00,16,00,7¢,aa,57
77 23 0b;78 bl ;20,16

1390 ’2.Typ

1400 DATA 21,00,00,11,00,00,ed,5f,ae,77,1b
,7a,b3,23,20,f6

1410 ’3.Typ

1420 DATA 21,00,00,01,00,00,cd,00,00,dd,el
,ed,5f,dd,ac,ae,dd,ad,77,0b,79,23,b0,20,f2
1430 ’4.Typ

1440 DATA 01,00,00,fd,21,00,00,21,00,00,ed
;5F; fd ae,00,ac,ad,fd,77,00,0b,2b,fd, 23,78
ot ee

1450 'INTRODUCTION

1460 DATA f3,ed,56,3e,04,ed,4f

1470 DATA "Spec1a1 Alkatraz Protection Sys

tem (c)1991 Klaus Meffert & CPC Internatio

al"

n
1480 DATA @

[555]
[89]

[1896]
[4338]

[3056]
[4530]
[1448]
[1808]
[5869]

[933]
[4565]

[974]
[1314]
[555]

[2852]
[2681]

[1176]
[1276]
[4530]

[1448]
[1808]
[5869]

[933]
[4306]

[2183]
[1634]
[4530]

[2271]
[1808]
[5869]

[1448]
[is12]°
[4785]

[4182]
[2230]

[974]
[1161]
[555]
[117]
[3626]

[3679]
[411]
[95]
[3233]

[719]
[1685]

[190]
[4573]

303
[4758]

[1108]
[1371]
[8821]

[215]

82 epc 12'91/1°92

